Magnetic resonance imaging

  • Anatomical MRI in vivo or ex vivo, with or without contrast agents
  • Dynamic MRI (e.g. for tumor perfusion studies)
  • Functional MRI (e.g. for heart monitoring)
  • Molecular MRI, using contrast agents


Magnetic Resonance Imaging (MRI) is one of the most performant imaging techniques for clinical radiology and it is also largely used in scientific research because of the detailed and thorough information it can generate. Images can be obtained in vivo or ex vivo with very high spatial and temporal resolution.

MRI relies on nuclear magnetic resonance, a phenomenon in which certain atomic nuclei (including that of hydrogen 1H), when placed in a strong magnetic field, absorb and re-emit electromagnetic wave at a specific (“resonance”) radio frequency. It is possible to get different contrasts, which will reflect the different molecular environments of the observed atom.

Image quality and information content can be increased by the administration of specific contrast agents that will allow, for instance, a more effective detection of tumors or metastases. MRI can also be used in other biomedical applications, such as angiography (imaging of blood vessels), functional imaging (e.g. brain activation territories), cellular and molecular imaging, and spectroscopy (simultaneous imaging and biochemical analysis of specific molecules or cell types). The development of specific contrast agents is carried out in collaboration with the Department of General, Organic and Biomedical Chemistry of the Université de Mons.


  • MRI at two magnetic fields: 9.4 T and 1T
    • Experiments are performed mainly on mice and rats.
    • Other samples or organisms can be imaged (maximum size must be comparable to that of above-mentioned rodents).
    • Contrast agents can be injected without modifying the animal position.
    • Systems for anesthetizing (isoflurane), warming and monitoring the animal are available.
  • Anatomical information:
    • Up to 50µm spatial resolution.
    • Excellent contrast for soft tissues imaging.
    • No depth limitation.
    • Ideal for tumor’s volumes monitoring studies as in PDTX or mouse xenograft models.
    • 2D multiple slices or whole 3D volume imaging.
  • Dynamic information:
    • DCE (Dynamic Contrast-Enhanced) imaging allows perfusion studies.
    • High temporal resolution could be achieved.
  • Functional imaging:
    • Heart beating imaging
    • DWI/DTI imaging: measuring diffusion of water
  • Molecular imaging:
    • Administration of specific contrast agents
    • Biomarkers imaging in cancer, angiogenesis, apoptosis, atherosclerosis, …


  • 9.4 T Bruker Biospec
  • 1T Bruker ICON

Biospec 9.4T (4) Bruker ICON 1T (3)

We thank the European Regional Development Fund, the Walloon Region and the FRS/FNRS who made it possible for us to acquire these instruments.

Selected Publications

1)      Galectin-1 is a diagnostic marker involved in thyroid cancer progression.
Arcolia V, Journe F, Wattier A, Leteurtre E, Renaud F, Gabius HJ, Remmelink M, Decaestecker C, Rodriguez A, Boutry S, Laurent S, Saussez S. Int J Oncol. 2017 Sep;51(3):760-770. doi: 10.3892/ijo.2017.4065.

2)      Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer.
Blomme A, Costanza B, de Tullio P, Thiry M, Van Simaeys G, Boutry S, Doumont G, Di Valentin E, Hirano T, Yokobori T, Gofflot S, Peulen O, Bellahcène A, Sherer F, Le Goff C, Cavalier E, Mouithys-Mickalad A, Jouret F, Cusumano PG, Lifrange E, Muller RN, Goldman S, Delvenne P, De Pauw E, Nishiyama M, Castronovo V, Turtoi A. Oncogene. 2017 Apr;36(15):2116-2130. doi: 10.1038/onc.2016.369.

3)      Chemical and in vitro characterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging
M. Dentamaro, F. Lux, L. Vander Elst, N. Dauguet, S. Montante, A. Moussaron, C. Burtea, R.N. Muller, O. Tillement,S. Laurent, Contrast Media & Mol Imaging, 11, 381–395 (2016)

4)      Produits de contraste en imagerie par résonance magnétique
S. Laurent, S. Boutry, L. Vander Elst, R.N. Muller, EMC – Radiologie et imagerie médicale – principes et technique – radioprotection. 2016

5)      Targeting of cell death and neuroinflammation with peptide-linked iron oxide nanoparticles and Gd-DTPA in a mouse model of Parkinson’s disease
Sclavons, S. Boutry, S. Laurent, L. Vander Elst, R.N. Muller, Journal of Biomedical Engineering and Informatics. 2 (1) (2016), DOI: 10.5430/jbei.v2n1P13

6)     Development of a New Molecular Probe for the Detection of Inflammatory Process
S. Laurent, D. Stanicki, S. Boutry, J.C. Roy, L. Vander Elst, R.N. Muller, J Mol Biol & Mol Imaging, 2(1), id1013, 4 pages (2015).

7)      Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging
Stanicki, S. Boutry, S. Laurent, L. Wacheul, E. Nicolas, D. Crombez, L. Vander Elst, D.L.J. Lafontaine, R.N. Muller, J. Mater. Chem. B, 2(4), 387-397 (2014)

8)     New carboxysilane coated iron oxide nanoparticles for non-specific cell labelling
J.-L. Bridot,D. Stanicki,S. Laurent, S. Boutry,Y. Gossuin, P. Leclère, R. Lazzaroni, L. Vander Elst, R.N. Muller, Contrast Med. Mol. Imaging, 8(6), 466–474,(2013)

9)     Specific E-selectin targeting with a superparamagnetic MRI contrast agent.
Boutry S, Laurent S, Elst LV, Muller RN. Contrast Media Mol Imaging. 2006 Jan-Feb;1(1):15-22

10)      Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent.
Boutry S, Burtea C, Laurent S, Toubeau G, Vander Elst L, Muller RN, Magn Reson Med. 2005 Apr;53(4):800-7.


Facility manager Academic supervisor



Magnetic resonance imaging